Axial Piston Variable Double Pump A20VO

RE 93 100/05.06 1/16 Replace: 07.03

Technical data sheet

Series 1 Sizes 60

Nominal pressure/ Peak pressure

60 250/315 bar 95...520 350/400 bar

for open circuits

Contents

Ordering Code / Standard Program	2
Technical Data	3
Through Drive	3
Control Devices	4
Unit Dimensions, Size 60	6
Unit Dimensions, Size 95	8
Unit Dimensions, Size 190 (with impeller)	10
Unit Dimensions, Size 260 (with impeller)	12
Unit Dimensions, Size 520	14
General Notes	16

Features

- Variable pump with two axial piston rotary groups in swashplate design for use in open circuit hydrostatic drives
- For use in mobile and stationary applications
- The pump consists of proven components from the A11VO (RE 92500), A10VO/53 (RE 92703) or A4VSO (RE 92050) variable pumps
- The pump operates under self-priming condition, with tank pressurisation or with charge pump (sizes 190...260)
- A wide variety of controls are available
- Setting of the constant power control is possible via external adjustments, even when the unit is operating (only with power contol).
- The pump is available with a through drive to mount a gear pump or a second axial piston pump
- Output flow is proportional to drive speed and pump displacement and is steplessly variable between maximum and zero displacement

K99

Ordering Code / Standard Program

A20V		0			/	10		ı					
01	02	03	04	05		06	07		08	09	10	11	12

01	Swashplate design, variable (Back to back - design)							A20
	Charge pump (impeller)		60	95	190	260	520	7.20
	without charge pump (no code)		•	•	-	_	•	
)2	with charge pump		_	_			_	L
			l				<u> </u>	
)3	Operation Double pump, open circuit							0
<i></i>								
2.4	Size			0.5	100	000	F00	1
J4	≈ Displacement V _{g max} in cm ³ (per rotary group)		60	95	190	260	520	J
	Control devices		60	95	190	260	520	
	see RE 92703 (A10VO/53)		•	_	_	_	_	
)5	see RE 92500 (A11VO)		-	•	•	•	-	
	see RE 92050 (A4VSO) and RE 92060, RE 92064, RE	<u> </u>	_	_	_	_	•	<u> </u>
	Series							
)6	Series 1, Index 0							10
	Direction of rotation							
07	viewed on shaft end	clockwise						R
) /		counter-clockwis	se					L
	Seals							_
	NBR (nitril-caoutchouc), shaft seal ring in FKM (fluor-cao	outchouc)	•	•	•	•	_	N
8(FKM (fluor-caoutchouc)	·	_	_	_	_	•	V
	Shaft end		60	95	190	260	520	
	Splined shaft DIN 5480		_	•	•	•	•	Z
40	Splined shaft, ANSI B92.1a-1976		•	•	-	-	-	S
10			_	-	•	•	-	Т
	Parallel keyed shaft, DIN 6885		_	_	_	_	•	Р
	Mounting flange		60	95	190	260	520	
	SAE J744 – 4-hole		•	•	•	•	_	D
	To fit flywheel housing (conformin to SAE J617)			_	_			
9	of internal combustion engine (details on request)		_	•	•	_	_	G
	ISO 3019-2 – 8-hole		-	-	-	_	•	Н
	Service line ports		60	95	190	260	520	
	Two service line ports and one scution port at site,			_	_			
	opposite (fastening thread metric)		•	•	•	•	_	24
11	At the site two service line ports each, opposite and one	suction port displaced						
	by 90° (fastening thread metric)		_	_	_	_	•	26
	Boost pump and through drive ¹)		60	95	190	260	520	
	without boost pump, without through drive		•	•	•	•	_	NO
	without boost pump, with through drive						ı	
	Flange SAF J744 Splined shaft hu	ub						
12		16/32DP (A)	0	0	О	0	_	KO

ullet = available O = available on request - = not available

with through drive shaft, without hub, without intermediate flange, closed by a cover

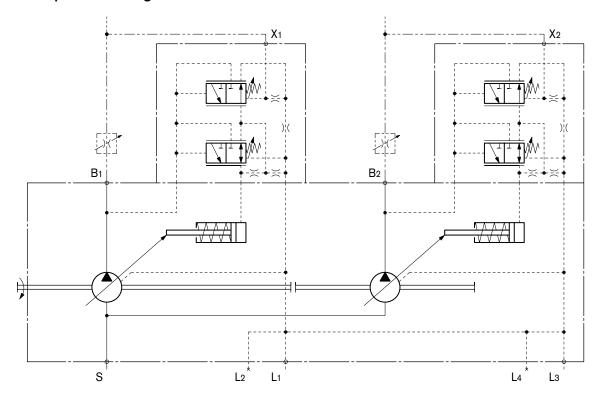
¹⁾ Please contact us

Technical Data

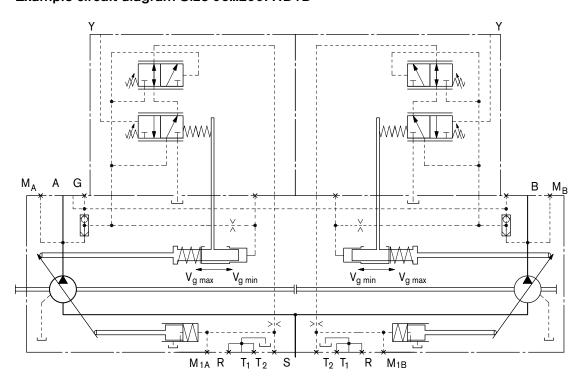
Table of values (theoretical values, without efficiencies η_{mh} and η_{v} ; values rounded)

Size	without charge pump with charge pump		60	95	190	260	520	
Displacement	$V_{g max}$	cm ³	60	93,8	192,7	260	520	
(per rotary group)	$V_{g min}$	cm ³	0	0	0	0	0	
Speed								
maximal 1) at $V_{g max}$	n _{max}	min ⁻¹	2700	2350	2500 ²)	2300 ²)	1450	
Speed max. ³)								
at $V_g \leq V_{g max}$	n _{max}	min ⁻¹	3200	2780	2500	2300	1720	
Flow								
at n_{max} and $V_{g\ max}$	q _{v max}	L/min	2x162	2x220	2x482	2x598	2x754	
Power at q _{V max}								
and $\Delta p = 350$ bar	P_{max}	kW	135 ⁴)	257	562	698	880	
Torque at V _{g max}								
at long-term ($\Delta p = 350$ bar)	T_{max}	Nm	477 ⁴)	1045	2147	2897	5793	
max. perm., short term ($\Delta p = 400 \text{ bar}$)	T _{max}	Nm	602 ⁴)	1194	2454	3310	6621	
Moment of inertia (of the rotating parts)	J	kgm²	0,0113	0,0346	0,0604	0,0912	0,696	
Mass approx.	m	kg	44				640	

 $^{^{1}}$) The values are quoted for an absolute pressure (p_{abs}) of 1 bar at suction port S and mineral operating fluid.

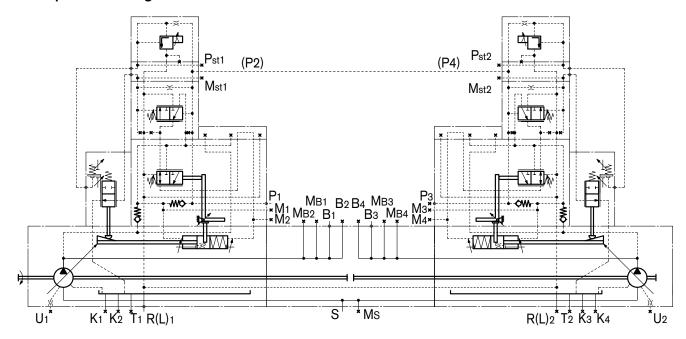

Through Drive

Please contact us.


²) The values are quoted for an absolute pressure (p_{abs}) of at least 0.8 bar at suction port S and mineral operating fluid.
³) The values are quoted for $V_g < V_{g max}$ or increase of the input pressure p_{abs} at suction port S.
⁴) $\Delta p = 250$ bar (long-term operation) or rather 315 bar (short term).

Control Devices

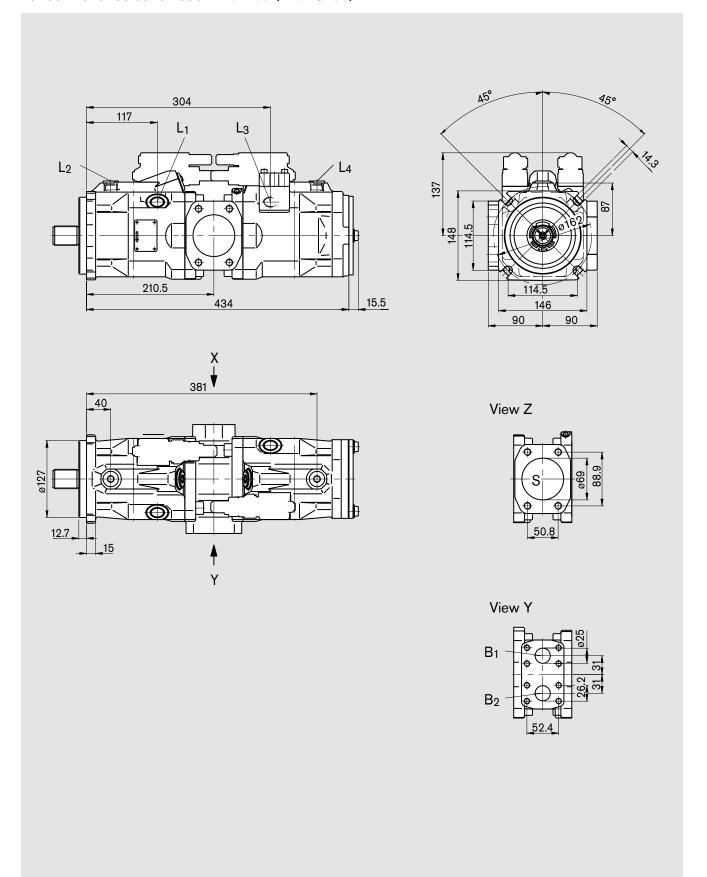
Example circuit diagram Size 60: DFR



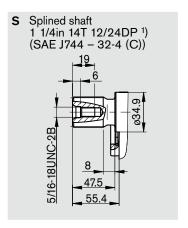
Example circuit diagram Size 95...260: HD1D

Control Devices

Example circuit diagram Size 520: LR2DN


Further technical datas as soon as control devices see

for size 60______ RE 95703 (A10VO/53)

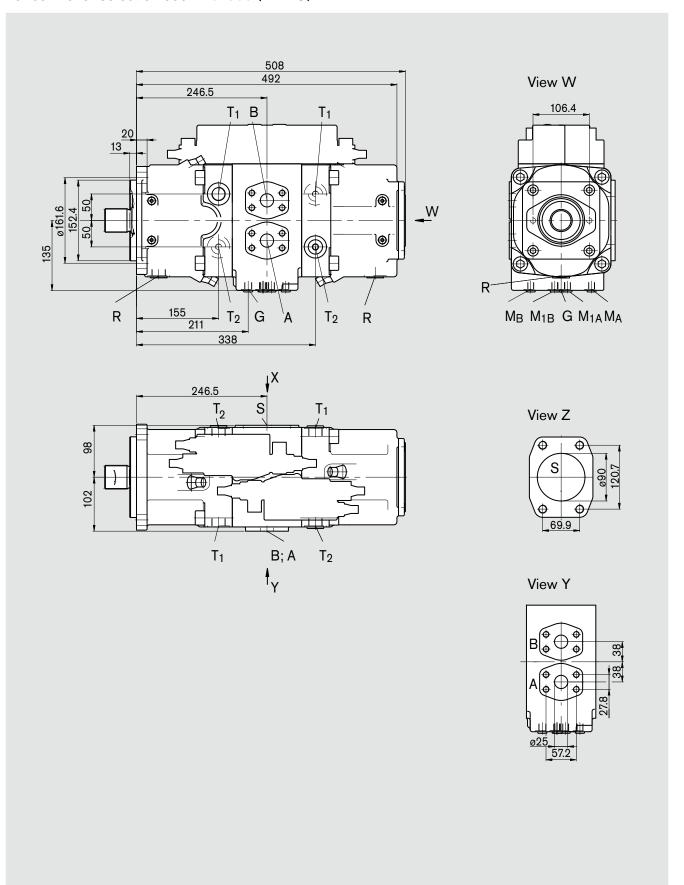

for sizes 95 ... 260______ RE 92500 (A11VO)

for size 520 _____ RE 92050 (A4VSO), RE 92060, RE 92064, RE 92076

For controller selection see RE 92703 (A10VO/53)

Shaft end

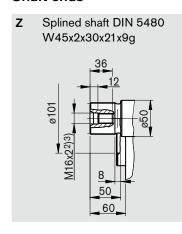
Before finalizing your design, please request a approved installation drawing. Dimensions in mm

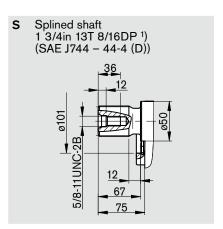

Ports

B_1, B_2	Service ports (High pressure series)	SAE J518	1in	
	Fastening thread	DIN 13	M10x1,5; 17 deep ²)	
S	Suction port	SAE J518	2 1/2 in	
	Fastening thread	DIN 13	M12x1,75; 20 deep ²)	
$L_{1,2,3,4}$	Case drain	DIN 3852	7/8-14UNF-2B	240 Nm ²)

 $^{^{\}rm 1}\!)$ ANSI B92.1a-1976, pressure angle 30°, flat rood, side fit, tolerance class 5

²⁾ please observe the general notes for the max. tightening torques on page 16


For controller selection see RE92500 (A11VO)



9/16

Unit Dimensions, Size 95

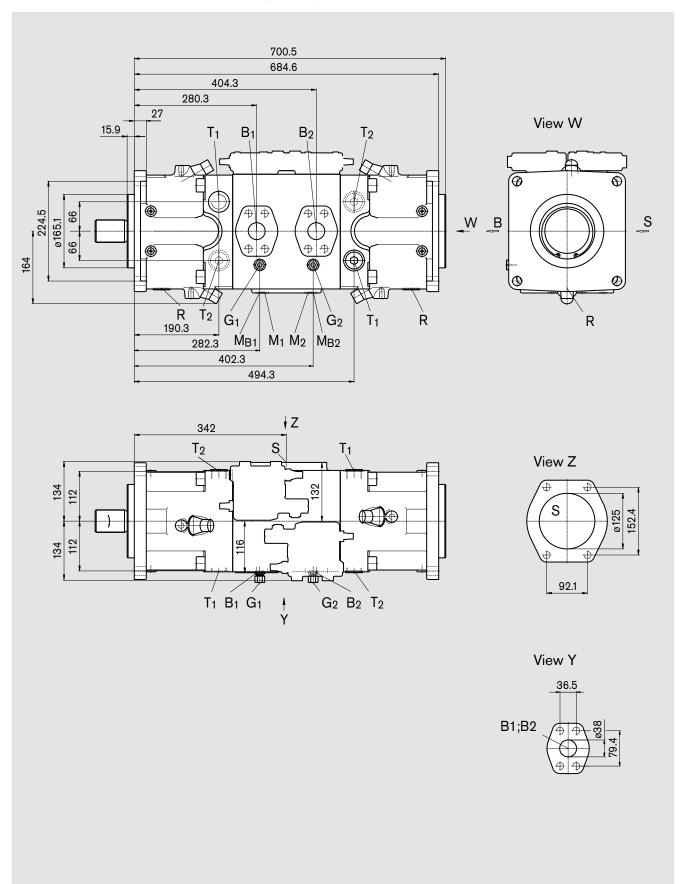
Shaft ends

Ports

A, B	Service ports (High pressure series)	SAE J518	1in	
	Fastening threads	DIN 13	M12x1,75; 17 deep ³)	
S	Suction port (standard series)	SAE J518	3 1/2 in	
	Fastening threads	DIN 13	M16x2; 24 deep ³)	
T_1, T_2	Case drain	DIN3852	M26x1,5; 14 deep	230 Nm ³)
M_A, M_B	Gauge point positioning chamber	DIN3852	M12x1,5; 12 deep	50 Nm ³)
M_{A1}, M_{B1}	Gauge point for service port	DIN3852	M12x1,5; 12 deep	50 Nm ³)
R	Air bleed, drain port	DIN3852	M26x1,5; 14 deep	230 Nm ³)
G	Control pressure port (controller) 4)	DIN3852	M14x1,5; 12 deep	80 Nm ³)

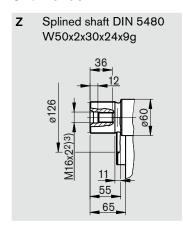
¹⁾ ANSI B92.1a-1976, pressure angle 30°, flat rood, side fit, tolerance class 5

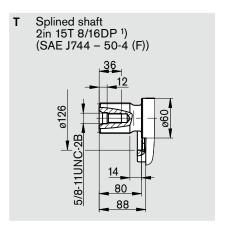
²) Center bore according to DIN 332 (thread according to DIN13)


³⁾ please observe the general notes for the max. tightening torques on page 16

⁴⁾ At design with stroke limiter (H..., U2), HD and EP with fitting GE10-PLM (in other case is port G plugged)

Unit Dimensions, Size 190 (with impeller)


Before finalizing your design, please request a approved installation drawing. Dimensions in mm


For controller selection see RE92500 (A11VO)

Unit Dimensions, Size 190 (with impeller)

Shaft ends

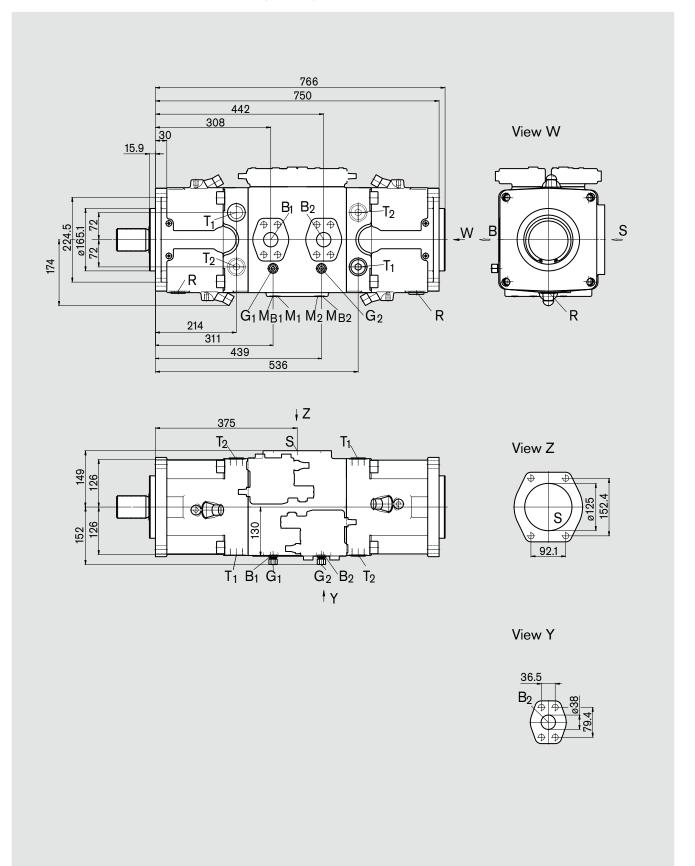
Before finalizing your design, please request a approved installation drawing. Dimensions in mm

Connections

B_1, B_2	Service ports (High pressure series)	SAE J518	1 1/2 in	
	Fastening threads	DIN 13	M16x2; 21 deep	
S	Suction port (standard series)	SAE J518	5 in	
	Fastening threads	DIN 13	M16x2; 23 deep	
T_1, T_2	Case drain	DIN3852	M33x2; 18 deep	540 Nm ⁴)
M_1, M_2	Gauge point positioning chamber	DIN3852	M12x1,5; 12 deep	50 Nm ⁴)
M _{B1} , M _B	2 Gauge point for service port	DIN3852	M12x1,5; 12 deep	50 Nm ⁴)
R	Air bleed, drain port	DIN3852	M33x2; 16 deep	540 Nm ⁴)
G_1, G_2	Control pressure port (controller) 4)	DIN3852	M14x1,5; 12 deep	80 Nm ⁴)

¹⁾ ANSI B92.1a-1976, pressure angle 30°, flat rood, side fit, tolerance class 5

²) Center bore according to DIN 332 (thread according to DIN13)

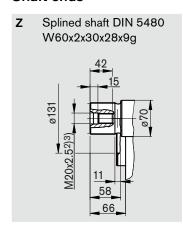

³⁾ please observe the general notes for the max. tightening torques on page 16

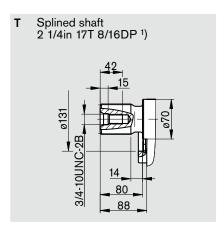
⁴⁾ At design with stroke limiter (H..., U2), HD and EP with fitting GE10-PLM (in other case is port G plugged)

Unit Dimensions, Size 260 (with impeller)

Before finalizing your design, please request a approved installation drawing. Dimensions in mm

For controller selection see RE92500 (A11VO)




Before finalizing your design, please request a approved installation drawing. Dimensions in mm

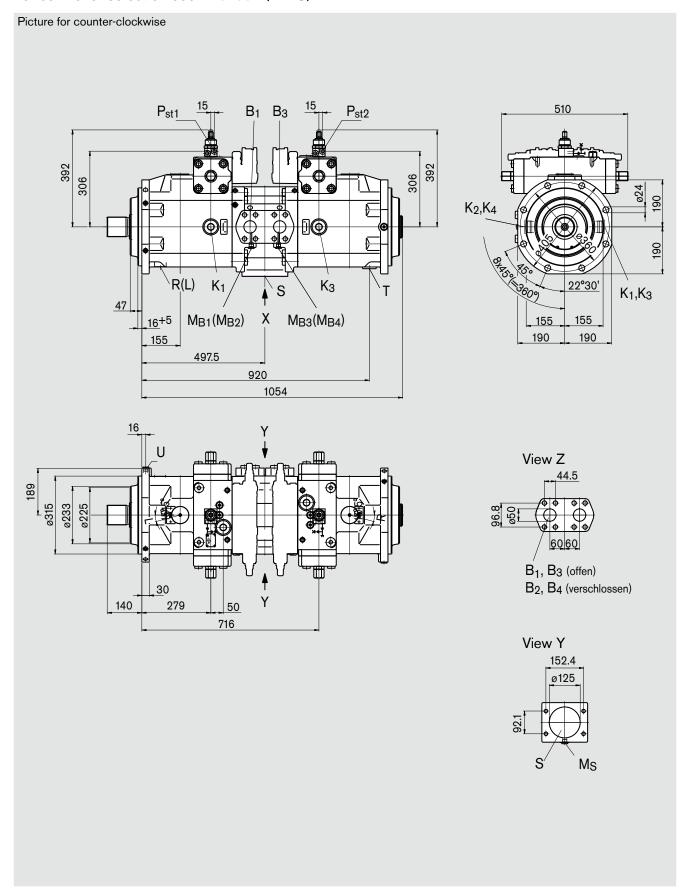
13/16

Unit Dimensions, Size 260 (with impeller)

Shaft ends

Connections

B_1, B_2	Service ports (High pressure series)	SAE J518	1 1/2 in	
	Fastening threads	DIN 13	M16x2; 21 deep ³)	
S	Suction port (standard series)	SAE J518	5 in	
	Fastening threads	DIN 13	M16x2; 23 deep ³)	
T_1, T_2	Case drain	DIN3852	M33x2; 18 deep	540 Nm ³)
M_1, M_2	Gauge point positioning chamber	DIN3852	M12x1,5; 12 deep	50 Nm ³)
M_{B1} , M_{B2}	Gauge point for service port	DIN3852	M12x1,5; 12 deep	50 Nm ³)
R	Air bleed, drain port	DIN3852	M33x2; 16 deep	540 Nm ³)
G_1, G_2	Control pressure port (controller) 3)	DIN3852	M14x1,5; 12 deep	80 Nm ³)

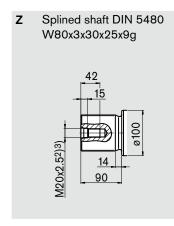

¹⁾ ANSI B92.1a-1976, pressure angle 30°, flat rood, side fit, tolerance class 5

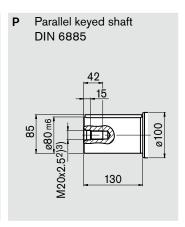
²) Center bore according to DIN 332 (thread according to DIN13)

³⁾ please observe the general notes for the max. tightening torques on page 16

⁴⁾ At design with stroke limiter (H..., U2), HD and EP with fitting GE10-PLM (in other case is port G plugged)

For controller selection see RE92064 (A4VS)




15/16

Before finalizing your design, please request a approved installation drawing. Dimensions in mm

Unit Dimensions, Size 520

Shaft ends

Connections

Nm ³)
Nm ³)
Nm ³)
اس ³)
Nm ³)
Nm ³)
Nm ³)
•

¹⁾ ANSI B92.1a-1976, pressure angle 30°, flat rood, side fit, tolerance class 5

²⁾ Center bore according to DIN 332 (thread according to DIN13)

³⁾ please observe the general notes for the max. tightening torques on page 16

⁴⁾ At design with stroke limiter (H1) with fitting GE10-PLM (in other case is port G plugged)

General Notes

16/16

- The pump A20VO is designed to be used in open circuits.
- Project planning, assembly and commissioning of the pump require the invovement of trained personnel.
- The working and functional ports are only designed to accommadate hydraulic piping.
- There is a danger of burns from the pump and especially the solenoids during and shortly after operation. Suitable safety precautions, e.g. protective clothing plan.
- The characteristic curve may shift depending on the operating status (operating pressure, fluid temperature) of the pump.
- Tightening torques:
 - The tightening torques specified in this data sheet are maximum values and may not be exceeded (maximum value for screw thread). Manufacturer specifications for the max. permissible tightening torques of the used fittings must be observed!
 - For DIN 13 fastening screws we recommend checking the tightening torque individually according to VDI 2230 Edition 2003.
- The data and information contained herein must be adhered to.

Bosch Rexroth AG
Hydraulics
Product Segment Axial Piston Units
Elchingen Plant
Glockeraustrasse 2
89275 Elchingen, Germany
Phone +49 (0) 73 08 82-0
Facsimile +49 (0) 73 08 72 74
info.brm-ak@boschrexroth.de
www.boschrexroth.com/brm

Horb Plant
An den Kelterwiesen 14
72160 Horb, Germany
Phone +49 (0) 74 51 92-0
Facsimile +49 (0) 74 51 82 21

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.